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Abstract - In this paper, the greenhouse climate model based 
on adaptive fuzzy logic system is presented. Greenhouse climate 
system is a non-linear system with the various climate factors 
being coupled. Due to its capability to handle both numerical 
data and linguistic information, it is feasible to apply adaptive 
fuzzy logic system to model for greenhouse climate, and then 
provide prediction for greenhouse climate control. 
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I. INTRODUCllOM 

Greenhouse climate model is an essential tool for 
greenhouse climate control. The model must describe the 
responses of the greenhouse climate to the external 
influences such as solar radiation, outside air temperature, 
wind speed and outside humidity, and to the control actions 
performed over the actuators used in the greenhouse such as 
ventilators, heating systems etc. 

The model can be computed in two ways. One method is 
based on the physical laws involved in the process and the 
other on the analysis of the input-output data of the process. 
In the first method the thermodynamic properties of the 
greenhouse system are employed. Businger(l963) proposed a 
greenhouse climate model which based on energy balance 
and provided detailed analysis. After that some dynamic 
models were presented (Takakura et al., 1971; Avissar, 1973; 
Mahrer, 1982; Van Bavel et al., 1985; Kimball, 1989). 
Bot( 1991), Boulardand Bailie( 1993) described the 
greenhouse climate by energy and mass balance equations. 
However, the parameters of the equations are time-variant 
and weather-dependent, so it is difficult to obtain accurate 
mathematical models of the greenhouse climate. 

The second approach is based on the theory of system 
identification. Because of parameter uncertainty and 
difficulty of linearization of the system, normal methods of 
system identification such as Least Square can't be applied to 
greenhouse climate system. Although three-layer BP neural 
network can fit  a nonlinear map function by arbitrary 
accuracy, it can't utilize structured linguistic information, and 
its net weight values are random, which make algorithm 
converge slowly and the solution be immersed in local 
optimum. Normal fuzzy logic methods can make full use of 
linguistic knowledge, but they can't tune rules on-line, they 

don't adapt to process time-variant objects. We apply 
adaptive fuzzy logic system to model for the greenhouse 
system. 

Adaptive fuzzy logic system is a class of fuzzy logic 
systems, which has the learning capability and CSLI 
automatically modify fuzzy rules by learning. In addition, i 
can utilize both numerical data and linguistic information. Sc 
it can identify time-variant nonlinear systems. We call thc 
fuzzy logic system fuzzy identifier, which has bacl 
propagation learning algorithm and is used to identify 
nonlinear dynamic systems. Compared with neural network 
identifier, fuzzy identifier has two essential advantages: 
(1) The initial parameters of fuzzy identifier have physical 
meanings, we can select them in a good way. On the contrary, 
the initial parameters of neural network identifier are usually 
selected randomly. Because the back propagation learning 
algorithm adopted by two kinds of identifier belongs to 
gradient algorithm, the selection of initial parameters 
influences the convergence speed of algorithm to a great 
extent. 
(2) Fuzzy identifier can handle linguistic information. Fuzzy 
identifier is based on fuzzy logic system, which is composed 
of a set of "if-then'' rules, so it provides the path for utilizing 
linguistic information. Important information about the 
unknown nonlinear system is probably contained in the 
linguistic information. In brief, we utilize linguistic 
information to construct an initial identifier. The fuzzy 
identifier based on it tracks the real system faster. 

11. PHYSICAL MODELING OF GREENHOUSE 
CLIMATE 

A Physical Model of the Greenhouse Climate 

Basing on the analysis of physical processes of greenhouse 
climate, we can obtain dynamic equation of greenhouse air 
temperature via energy balance. The general expression is: 

V,Cap, dTg ldt  = E ,  + EWd +Ehf +Ega 
(1) 

+Emc +Event +Esoil - E  

Where Vg is the volume of the greenhouse ( m 3 ) ,  Capg is the 
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heat capacity of the greenhouse( Jm"k-'), Tg and T, the 

in-and exterior temperature respectively (k or Oc ). E, is the 
solar radiation, E, I Q, x s ;E,, is the long-wave radiation 

between the cover and outside air, Emd I -E,F,U(T; - T:) . 
Em is the heat transfer between the heating system and 
greenhouse air, Eh = Qm x s p  ; E ,  is the heat conduction 
between the greenhouse and outside by the 
cover, E, = Q ,  x s, ; E,, is the convective heat transfer 

between the cover and outside air, E,, = a,s,(T, - T g )  ; 
E,, is the ventilation heat exchange, 
E,, =+vCap,(Tg - T a ) ;  EWi, is the heat exchange with 

soil, E, = -l(dT, /&)s ; E is the heat for transpiration, 

E - f fGkl  -Q. 
This leads to the detailed expression: 

4 V,Cap, dT , /d t  -a, Izcose S-E ,F ,U(T~  -T:) 

+apsp (Tp - Tg ) - k,s, (Tg - T, ) I d 

+acsc (Ta -Tg 1 + *,Cap, (Tg -Ta 

- l(dTs /dt)s  - Hr: ( ~ 1  - c S )  (2) 

Where s is the ground area of greenhouse ( m 2 ) ,  s, is the 

cover area ( mz ), sp is the outside area of the heating pipes 

( d. 
B Analysis of the Physical Model 

I )  Parameter Analysis The model shows that the 
greenhouse climate system is a time-variant nonlinear system. 
For a given greenhouse, some coefficients such as a,. t . 
Eta. %. F, . s . sp S ,  . d are fixed, which are determined 
by the structure and physical property of greenhouse. Others 
are difficult to fix on. At first, convection is a complex 
process. Newton cooling law doesn't post the essence of 
convection, and just concentrates on the heat transfer 
coefficients which involve all factors affecting the 
convection such as air flow speed, temperature difference etc. 
Convective heat transfer between the heating system and the 
greenhouse is natural convection. Due to relative steady 
airflow, heat transfer coefficient up can be fixed. a, is time- 
variant and nonlinear because of outside weather uncertainty. 
Secondly, ventilation exchange relates to fluid dynamics, its 
accurate analysis and computation are difficult. Even if 
empirical formulas are used, we must do many experiments 
to determine the coefficients. Thirdly, due to the complexity 

of soil component, it is hard to compute the heat transfer with 
soil, which is a function of exterior and interior temperature. 
Finally, transpiration resistance r, is related to the boundary 
layer resistance and stomata resistance etc. While the stomata 
resistance is related to the stomata openings which depends 
on crop photosynthesis, respiration, outside temperature 
humidity as well as illumination. These result in that 
transpiration resistance is a time-variant nonlinear function 
of various factors. 

2) Input Analysis Some parameters of the model can be 
measured by sensors, which are considered as the 
disturbances, for example T, . Tg . T, .  c1. c a .  cg . I 

t9 . U .While heating pipe temperature Tp and opening of 
ventilatorp are regarded as the control inputs. Tp is 
controlled via water flow of pipe. According to the types of 
the inputs, we can rearrange the equation: 

VgCapgdTg/dt a a,rslcosO + &=FCdl': + (k , /d  +ac)sJ,  

(3) 
-1, nr,/dt - H&C, - cS) - E,F,UT~ 

- @pPp + ( k / d  + a,)%p.g + a P q P  

If overlooking the non-linearity of some Coefficients, it is 
linear for Tp and nonlinear for 4, (effective ventilation area) 
because of many coupled factors. For various disturbances, it 
is nonlinear. 

I I I. DESIGN OF FUZZY IDENTIFIER 

In order to find out the functional relation between the 
greenhouse temperature and various disturbances, it is 
assumed that the discrete nonlinear system has the following 
form: 

T g  (k) 3 f (Tg  (k -11, Ta (k), u(k), Rad(k), R H g  (k)) (4) 

Where f is the function that will be identified, Tg (k  -1) is the 

(k-1)th sampled greenhouse temperature( Oc), T, ( k )  is the kth 

sampled outside temperature( Oc), u(k) is the kth sampled 

wind speed(cm/sec), Rad(k) is the solar radiation( w /  m2 ), 
RH,(k) is the relative humidity of greenhouse, T,(k)  is 

output .i.e. the kth outside temperature( Oc). 
The model that is applied to identify is a serial-parallel 

model as figure 1. 

fg (k) j ( T g  (k - 11, TQ (k), u(k), Rad@), w, (k)) (5) 

The design includes two parts: 
(1) construction of initial fuzzy logic system; 
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Figure 1. The serial-parallel identification model 
based on fuzzy logic system 

(2) on-line self-tuning. During the construction, we should 
make full use of all initial information to approach the 
function. On-line self-tuning of parameters aims at minimize 
the error e between the system output and identifier output. 
The fuzzy logic system which is composed of central mean 
fuzzy eliminator, product inference rule, single-value fuzzy 
generator and gaussian membership function has the form as 
the following: 

Where J'is the center of output fuzzy set, E:andafthe 
center and width of input fuzzy set respectively,~~ is the ith 
input. Constructing a reasonable initial fuzzy logic system is 
to select the initial parameters( y' , 2: and U! )properly. For 
the function that will be identified, it is described by the 
equation, 

With 

IZ 11 Rad(k)-Rad'(k) 
*[a; exp(-( 

4 
(9) 

Tg (k  - 1) - Tg (k  - 1) 
*[a: exp(-( IZ 11 

0: 
Where 
Tg(k - l),T,(k),u(k),Rad(k),RHg(k) : Input variables; 

Tg ( k )  : Output variable; 

Ti (k) , T,' (k) , Rad' (k) , u' (k) , RH' (k) , T' (k - 1) : The center 

af : The width of various fuzzy set. 
The descriptive rules in relation to the unknown nonlinear 

function: 
IFT,(k) is moderate and Rad@) is weak and u(k) is larger 
and RH,(k) is larger and Tg(k -1) is lower, 

THEN Tg (&) is lower. 

IFT,(k) is moderate and Rad(k) is weak and U(&) is 
moderate andRHg(k) is moderate andTg(k -1) is lower. 

THEN Tg(k)  is lower. 

IFT,(k) is moderate and Rad(k) is weak and u(k) is 
larger and RH, (k) is low and Tg (k - 1) is lower, 

THEN Tg ( k )  is moderate. 

IFT,(k) is moderate and Rad@) is weaker and u(k) is 
larger and RH,(k) is moderate and Tg (k - 1) is moderate, 

THEN Tg(k)  is moderate. 

IFT,(k) is higher and Rad(k)is weaker and u(k)is 
moderate andRH,(k) is moderate andTg(k -1) is 

moderate, THEN Tg ( k )  is moderate. 

IFT,(k) is higher and Rad(k) is weaker and u(k) is larger 
and M , ( k )  is moderate andT,(k -1) is moderate 

THEN T J k )  is high. 

IFT,(k) is high and Rad@) is moderate and u(k) is large 
and RH, (k) is large and Tg (k - 1) is high, 

THEN Tg(k)  is high. 

IFT,(k) is high and Rod(k) is powerful and uQ) is large 

of various fuzzy set. 
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and RH,(k) is large and T8 (k -1) is high, 
THEN T, (k) is high. 

IFT,(k) is high and Rud(k) is more powerful and u(k) is 
large and RH,(k) is large and Tg(k -1) is high 

THEN T, (k) is higher. 

IFT,(k) is high and Rud(k) is moderate and u(k) is larger 
and RH, (k) is large and T, (k -1) is higher, 

THEN Tg (k) is high. 

IFT,(k) is moderate and Rud(k) is weak and u(k) is 
larger and RH, (k) is large and T, (k - 1) is lower, 

THEN T, (k) lower. 

IFT,(k) is lower and Rud(k) is weak and u(k) is 
moderate and RH,(k) is large and T,(k -1) is lower, 

THEN T,(k) is lower. 

IFT,(k) is lower and Rad(k) is weak and u(k) is 
small and RH,(k) is large and Tg(k -1) is lower, 

THEN T,(k) is low. 

IF T, (k) is lower and Rud(k) is weak and 
u(k) is smaller and RH,(k)  is large and Tg (k - 1) is low, 

THEN T,(k) is low. 

IFT,(k) is low and Rud(k) is weak and u(k) is small 
and RH, (k) is small and Tg (k - 1) is low, 

THEN T,(k) is low. 

The initial values of T; (k), ~ , ' ( k ) ,  R U ~ '  (k), U ' ( A ) ,  

RH' (k) , Ti (k - 1) and af are determined via these fuzzy 
rules. Basing on the two-day actual observation records to a 
certain greenhouse, the simulation values are listed in the 
following. Iteration number for the error back propagation 
computation is 500 times. 

y' - T i ( k )  =[27.3280 27.4092 29.7113 29.9971 
29.0652 34.0541 34.2582 34.2961 32.0686 30.7187 
27.3279 27.8259 25.7208 25.5886 24.78591 

2: - T,'(k)=[27.2001 26.8605 27.1689 26.9033 
28.4435 28.1140 29.8989 29.8996 29.9655 29.7776 
27.2002 25.3787 25.4839 25.7233 23.5217 

a: =[1.0985 0.6643 0.3196 0.5048 0.5035 
0.0373 0.4986 0.4999 0.5061 0.5112 1.0985 
0.4906 0.5788 0.8084 0.95411 

Fi - R~d'(k) =[110.9959 110.9963 111.0026 280.0001 
279.9915 280.0032 448.9999 787.oooO 617.9992 449.0094 
110.9959 111.0002 110.9988 110.9962 110.98681 

0; - [201.0032 201.0033 200.9977 200.9999 

201.0045 200.9976 200.9999 201.0000 201.0003 
201.0037 201.0032 200.9998 201.0012 201.0039 
201.01 271 

5 = ~'(k) =[737.9969 551.0014 738.0014 
738.0000 551.0215 738.0039 924.0003 924.0000 
923.9956 737.9792 37.9969 551.0001 178.0008 
364.0000 177.99761 

241.0254 240.9971 240.9994 241.0000 241.0076 
241.0153 241.0028 241.0000 241.0007 241.0022 
241.00441 

2; = RH'(k) =[99.3001 98.9001 97.9998 98.9000 
98.9004 98.8999 99.7000 99.7000 99.7000 99.7001 
99.7000 99.7000 99.7000 99.7000 98.0005] 

0; -[0.6000 0.6000 0.6OOO 0.6oOo 0.6000 
0.6OOo 0 . m  ' 0.6oOo 0 . m  0 . m  0.6OOo 
0.6OOo 0 . m  0.6OOo 0.6000] 

2; - Ti(& - 1) =[27.9024 27.9005 27.9002 30 
30.0044 30.0008 34.2999 34.3000 34.3000 32.1907 
27.8961 27.9007 27.9009 25.7966 25.8107J 

0; = [2.9000 2.9000 2.9000 2.9000 2.9000 
2.9000 2.9000 2.9000 2.9000 2.9002 2.9001 
2.9000 2.9000 2.9001 2.90011 

The learning and prediction results are showed in Fig 2. 

d, = [241.0028 241.0017 240.9991 241.0000 

IV.CONCLUSION 

It is rather difficult to model completely for greenhouse 
climate only basing on the physical laws involved in the 
process. Combing physical modeling with adaptive fuzzy 
logic system is a way to obtain the nonlinear functional 
relation between the greenhouse temperature and various 
climate factors. The simulation shows that this method can 
track the real system. 

4, 

1 
O Y) 1m ' 150 

Time(ll3 hour) 

- real output learningoutput o prediction 

Fig.2 Learning and prediction results of greenhouse temperature 
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