Application of Adaptive Fuzzy Logic System to Model for Greenhouse Climate

Pan Lanfang¹ Wang Wanliang^{1,2} Wu Qidi²

1: Research Center of Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China 2: Electron and Information Engineering Institute, Tongji University, Shanghai 200092, P. R. China

Abstract - In this paper, the greenhouse climate model based on adaptive fuzzy logic system is presented. Greenhouse climate system is a non-linear system with the various climate factors being coupled. Due to its capability to handle both numerical data and linguistic information, it is feasible to apply adaptive fuzzy logic system to model for greenhouse climate, and then provide prediction for greenhouse climate control.

Keywords - Greenhouse, Fuzzy logic system, Model.

I. INTRODUCTION

Greenhouse climate model is an essential tool for greenhouse climate control. The model must describe the responses of the greenhouse climate to the external influences such as solar radiation, outside air temperature, wind speed and outside humidity, and to the control actions performed over the actuators used in the greenhouse such as ventilators, heating systems etc.

The model can be computed in two ways. One method is based on the physical laws involved in the process and the other on the analysis of the input-output data of the process. In the first method the thermodynamic properties of the greenhouse system are employed. Businger(1963) proposed a greenhouse climate model which based on energy balance and provided detailed analysis. After that some dynamic models were presented (Takakura et al., 1971; Avissar, 1973; Mahrer, 1982; Van Bavel et al., 1985; Kimball, 1989). Bot(1991), Boulardand Baille(1993) described the greenhouse climate by energy and mass balance equations. However, the parameters of the equations are time-variant and weather-dependent, so it is difficult to obtain accurate mathematical models of the greenhouse climate.

The second approach is based on the theory of system identification. Because of parameter uncertainty and difficulty of linearization of the system, normal methods of system identification such as Least Square can't be applied to greenhouse climate system. Although three-layer BP neural network can fit a nonlinear map function by arbitrary accuracy, it can't utilize structured linguistic information, and its net weight values are random, which make algorithm converge slowly and the solution be immersed in local optimum. Normal fuzzy logic methods can make full use of linguistic knowledge, but they can't tune rules on-line, they don't adapt to process time-variant objects. We apply adaptive fuzzy logic system to model for the greenhouse system.

Adaptive fuzzy logic system is a class of fuzzy logic systems, which has the learning capability and car automatically modify fuzzy rules by learning. In addition, i can utilize both numerical data and linguistic information. Sc it can identify time-variant nonlinear systems. We call the fuzzy logic system fuzzy identifier, which has back propagation learning algorithm and is used to identify nonlinear dynamic systems. Compared with neural network identifier, fuzzy identifier has two essential advantages:

(1) The initial parameters of fuzzy identifier have physical meanings, we can select them in a good way. On the contrary, the initial parameters of neural network identifier are usually selected randomly. Because the back propagation learning algorithm adopted by two kinds of identifier belongs to gradient algorithm, the selection of initial parameters influences the convergence speed of algorithm to a great extent.

(2) Fuzzy identifier can handle linguistic information. Fuzzy identifier is based on fuzzy logic system, which is composed of a set of "if-then" rules, so it provides the path for utilizing linguistic information. Important information about the unknown nonlinear system is probably contained in the linguistic information. In brief, we utilize linguistic information to construct an initial identifier. The fuzzy identifier based on it tracks the real system faster.

II. PHYSICAL MODELING OF GREENHOUSE CLIMATE

A Physical Model of the Greenhouse Climate

Basing on the analysis of physical processes of greenhouse climate, we can obtain dynamic equation of greenhouse air temperature via energy balance. The general expression is:

$$V_g Cap_g dT_g / dt = E_s + E_{crad} + E_{heat} + E_{ga} + E_{cac} + E_{vent} + E_{soil} - E$$
(1)

Where V_g is the volume of the greenhouse (m^3) , Cap_g is the

0-7803-5995-X 00/\$10.00 @2000 IEEE.

1687

^{*} Supported by The High-Tech Research and Development Program of China(863-511-945-002) and Zhejiang Provincial Natural Science Foundation of China(698073)

heat capacity of the greenhouse $(Jm^{-3}k^{-1}), T_g$ and T_a the in-and exterior temperature respectively (k or ${}^{0}c$). E_{s} is the solar radiation, $E_s = Q_s \times s$; E_{crad} is the long-wave radiation between the cover and outside air, $E_{crad} = -\varepsilon_{ca}F_c\sigma(T_g^4 - T_a^4)$. E_{heat} is the heat transfer between the heating system and greenhouse air, $E_{heat} = Q_{heat} \times s_p$; E_{ga} is the heat conduction between the greenhouse and outside by the cover, $E_{ga} = Q_{ga} \times s_c$; E_{cac} is the convective heat transfer between the cover and outside air, $E_{cac} = \alpha_c s_c (T_a - T_g);$ is the ventilation heat exchange, Event $E_{vent} = \Phi_v Cap_g (T_g - T_a); E_{soil}$ is the heat exchange with soil, $E_{soil} = -l(dT_s/dt)s$; E is the heat for transpiration, $E = Hr_{tot}^{-1}(c_1 - c_g).$

This leads to the detailed expression:

$$V_{g}Cap_{g} dT_{g}/dt = \alpha_{s} I\tau \cos\theta s - \varepsilon_{ca}F_{c}\sigma(T_{g}^{4} - T_{a}^{4})$$

$$+\alpha_{p}s_{p}(T_{p} - T_{g}) - k_{c}s_{c}(T_{g} - T_{a})/d$$

$$+\alpha_{c}s_{c}(T_{a} - T_{g}) + \Phi_{v}Cap_{g}(T_{g} - T_{a})$$

$$-l(dT_{s}/dt)s - Hr_{tot}^{-1}(c_{1} - c_{g}) \qquad (2)$$

Where s is the ground area of greenhouse (m^2) , s_c is the cover area (m^2) , s_p is the outside area of the heating pipes (m^2) .

B Analysis of the Physical Model

1) Parameter Analysis The model shows that the greenhouse climate system is a time-variant nonlinear system. For a given greenhouse, some coefficients such as $\alpha_s \, \cdot \, \tau \, \cdot \, \mathcal{E}_{ca} \, \cdot \, V_g \, \cdot \, F_c \, \cdot \, s \, \cdot \, s_p \, \cdot \, S_c \, \cdot \, d$ are fixed, which are determined by the structure and physical property of greenhouse. Others are difficult to fix on. At first, convection is a complex process. Newton cooling law doesn't post the essence of convection, and just concentrates on the heat transfer coefficients which involve all factors affecting the convection such as air flow speed, temperature difference etc. Convective heat transfer between the heating system and the

variant and nonlinear because of outside weather uncertainty. Secondly, ventilation exchange relates to fluid dynamics, its accurate analysis and computation are difficult. Even if empirical formulas are used, we must do many experiments to determine the coefficients. Thirdly, due to the complexity

greenhouse is natural convection. Due to relative steady

airflow, heat transfer coefficient α_p can be fixed. α_c is time-

of soil component, it is hard to compute the heat transfer with soil, which is a function of exterior and interior temperature. Finally, transpiration resistance r_{tot} is related to the boundary layer resistance and stomata resistance etc. While the stomata resistance is related to the stomata openings which depends on crop photosynthesis, respiration, outside temperature. humidity as well as illumination. These result in that transpiration resistance is a time-variant nonlinear function of various factors.

2) Input Analysis Some parameters of the model can be measured by sensors, which are considered as the disturbances, for example $T_a \,\,,\, T_g \,\,,\, T_s \,\,,\, c_1 \,\,,\, c_a \,\,,\, c_g \,\,,\, I \,\,, \ \theta \,\,,\, u$. While heating pipe temperature T_p and opening of ventilator β are regarded as the control inputs. T_p is controlled via water flow of pipe. According to the types of the inputs, we can rearrange the equation:

$$V_{g}Cap_{g} dT_{g}/dt = \alpha_{s} rs I \cos\theta + \varepsilon_{ca} F_{c} \sigma T_{a}^{4} + (k_{c}/d + \alpha_{c}) s_{c} T_{a}$$

$$-l_{s} dT_{s}/dt - Hr_{tot}^{-1}(c_{1} - c_{g}) - \varepsilon_{ca} F_{c} \sigma T_{g}^{4}$$

$$-[\alpha_{p} s_{p} + (k_{c}/d + \alpha_{c}) s_{c}] T_{g} + \alpha_{p} s_{p} T_{p}$$

$$+ (ku + \lambda \sqrt{T_{g} - T_{a}}) A_{w}Cap_{g}(T_{g} - T_{a})$$
(3)

If overlooking the non-linearity of some coefficients, it is linear for T_p and nonlinear for A_w (effective ventilation area) because of many coupled factors. For various disturbances, it is nonlinear.

111. DESIGN OF FUZZY IDENTIFIER

In order to find out the functional relation between the greenhouse temperature and various disturbances, it is assumed that the discrete nonlinear system has the following form:

$$T_{g}(k) = f(T_{g}(k-1), T_{a}(k), u(k), Rad(k), RH_{g}(k))$$
(4)

Where f is the function that will be identified, $T_g(k-1)$ is the (k-1)th sampled greenhouse temperature(0c), $T_a(k)$ is the kth sampled outside temperature(0c), u(k) is the kth sampled wind speed(cm/sec), Rad(k) is the solar radiation(w/m^2), $RH_g(k)$ is the relative humidity of greenhouse, $T_g(k)$ is cuttout is the kth subside temperature(0c)

output .i.e. the kth outside temperature $\binom{0}{c}$.

The model that is applied to identify is a serial-parallel model as figure 1.

$$\hat{T}_{g}(k) = \hat{f}(T_{g}(k-1), T_{a}(k), u(k), Rad(k), RH_{g}(k))$$
 (5)

The design includes two parts: (1) construction of initial fuzzy logic system;

Figure 1. The serial-parallel identification model based on fuzzy logic system

(2) on-line self-tuning. During the construction, we should make full use of all initial information to approach the function. On-line self-tuning of parameters aims at minimize the error e between the system output and identifier output. The fuzzy logic system which is composed of central mean fuzzy eliminator, product inference rule, single-value fuzzy generator and gaussian membership function has the form as the following:

$$f(x) = \frac{\sum_{l=1}^{M} \overline{y}^{l} [\prod_{i=1}^{n} a_{i}^{l} \exp(-(\frac{x_{i} - \overline{x}_{i}^{l}}{\sigma_{i}^{l}})^{2})]}{\sum_{l=1}^{M} [\prod_{i=1}^{n} a_{i}^{l} \exp(-(\frac{x_{i} - \overline{x}_{i}^{l}}{\sigma_{i}^{l}})^{2})]}$$
(6)

Where \overline{y}^l is the center of output fuzzy set, \overline{x}_i^l and σ_i^l the center and width of input fuzzy set respectively, x_i is the ith input. Constructing a reasonable initial fuzzy logic system is to select the initial parameters (\overline{y}^l , \overline{x}_i^l and σ_i^l) properly. For the function that will be identified, it is described by the equation,

$$T_g(k) = \frac{H}{G}$$

With

$$H = \sum_{l=1}^{15} T_g^{\ l}(k) * [a_1^l \exp(-(\frac{T_a(k) - T_a^l(k)}{\sigma_1^l})^2)]$$

$$* [a_2^l \exp(-(\frac{Rad(k) - Rad^l(k)}{\sigma_2^l})^2)]$$

$$* [a_3^l \exp(-(\frac{u(k) - u^l(k)}{\sigma_3^l})^2)]$$

$$* [a_4^l \exp(-(\frac{RH(k) - RH^l(k)}{\sigma_4^l})^2)]$$

$$* [a_5^l \exp(-(\frac{T_g(k - 1) - T_g^{\ l}(k - 1)}{\sigma_4^l})^2)]$$

$$G = \sum_{l=1}^{15} \left[a_{1}^{l} \exp(-(\frac{T_{a}(k) - T_{a}^{l}(k)}{\sigma_{1}^{l}})^{2}) \right] \\ * \left[a_{2}^{l} \exp(-(\frac{Rad(k) - Rad^{l}(k)}{\sigma_{2}^{l}})^{2}) \right] \\ * \left[a_{3}^{l} \exp(-(\frac{u(k) - u^{l}(k)}{\sigma_{3}^{l}})^{2}) \right] \\ * \left[a_{4}^{l} \exp(-(\frac{RH(k) - RH^{l}(k)}{\sigma_{4}^{l}})^{2}) \right] \\ * \left[a_{5}^{l} \exp(-(\frac{T_{g}(k - 1) - T_{g}^{l}(k - 1)}{\sigma_{4}^{l}})^{2}) \right]$$
(9)

Where

 $T_g(k-1), T_a(k), u(k), Rad(k), RH_g(k)$: Input variables; $T_g(k)$: Output variable;

 $T_g^l(k), T_a^l(k), Rad^l(k), u^l(k), RH^l(k), T_g^l(k-1)$: The center of various fuzzy set.

 σ_i^l : The width of various fuzzy set.

The descriptive rules in relation to the unknown nonlinear function:

IF $T_a(k)$ is moderate and Rad(k) is weak and u(k) is larger and $RH_g(k)$ is larger and $T_g(k-1)$ is lower,

THEN $T_g(k)$ is lower.

IF $T_a(k)$ is moderate and Rad(k) is weak and u(k) is moderate and $RH_g(k)$ is moderate and $T_g(k-1)$ is lower. THEN $T_g(k)$ is lower.

IF $T_a(k)$ is moderate and Rad(k) is weak and u(k) is larger and $RH_g(k)$ is low and $T_g(k-1)$ is lower,

THEN $T_{e}(k)$ is moderate.

IF $T_a(k)$ is moderate and Rad(k) is weaker and u(k) is larger and $RH_g(k)$ is moderate and $T_g(k-1)$ is moderate, THEN $T_g(k)$ is moderate.

IF $T_a(k)$ is higher and Rad(k) is weaker and u(k) is moderate and $RH_g(k)$ is moderate and $T_g(k-1)$ is moderate, THEN $T_g(k)$ is moderate.

IF $T_a(k)$ is higher and Rad(k) is weaker and u(k) is larger 8) and $RH_g(k)$ is moderate and $T_g(k-1)$ is moderate, THEN $T_g(k)$ is high.

IF $T_a(k)$ is high and Rad(k) is moderate and u(k) is large and $RH_g(k)$ is large and $T_g(k-1)$ is high,

THEN $T_g(k)$ is high.

IF $T_a(k)$ is high and Rad(k) is powerful and u(k) is large

1689

(7)

and $RH_g(k)$ is large and $T_g(k-1)$ is high. THEN $T_g(k)$ is high.

IF $T_a(k)$ is high and Rad(k) is more powerful and u(k) is large and $RH_g(k)$ is large and $T_g(k-1)$ is high, THEN $T_g(k)$ is higher.

IF $T_a(k)$ is high and Rad(k) is moderate and u(k) is larger and $RH_g(k)$ is large and $T_g(k-1)$ is higher,

THEN $T_{g}(k)$ is high.

IF $T_a(k)$ is moderate and Rad(k) is weak and u(k) is larger and $RH_g(k)$ is large and $T_g(k-1)$ is lower, THEN $T_g(k)$ lower.

IF $T_a(k)$ is lower and Rad(k) is weak and u(k) is moderate and $RH_g(k)$ is large and $T_g(k-1)$ is lower, THEN $T_g(k)$ is lower.

IF $T_a(k)$ is lower and Rad(k) is weak and u(k) is small and $RH_g(k)$ is large and $T_g(k-1)$ is lower,

THEN $T_g(k)$ is low.

IF $T_a(k)$ is lower and Rad(k) is weak and

u(k) is smaller and $RH_g(k)$ is large and $T_g(k-1)$ is low, THEN $T_g(k)$ is low.

IF $T_a(k)$ is low and Rad(k) is weak and u(k) is small and $RH_g(k)$ is small and $T_g(k-1)$ is low,

THEN $T_{g}(k)$ is low.

The initial values of $T_g^l(k), T_a^l(k), Rad^l(k), u^l(k),$

 $RH^{l}(k), T_{g}^{l}(k-1)$ and σ_{i}^{l} are determined via these fuzzy

rules. Basing on the two-day actual observation records to a certain greenhouse, the simulation values are listed in the following. Iteration number for the error back propagation computation is 500 times.

$y' = T_g'(k) = [27.3280]$			27.4092	29.7113	29.9971
29.0652	34.0541	34.2582	34.2961	32.0686	30.7187
27.3279	27.8259	25.7208	25.5886	24.7859]	
$\overline{x}_1^{l} =$	$T_a^l(k) = [2$	7.2001	26.8605	27.1689	26.9033
28.4435	28.1140	29.8989	29.8996	29.9655	29.7776
27.2002	25.3787	25.4839	25.7233	23.5217]	
$\sigma_1^l =$	[1.0985	0.6643	0.3196	0.5048	0.5035
0 0272	0.4086	0 4000	0 5061	0 5112	1.0085

 $\overline{x}_2^l = Rad^l(k) = [110.9959 \ 110.9963 \ 111.0026 \ 280.0001 \ 279.9915 \ 280.0032 \ 448.9999 \ 787.0000 \ 617.9992 \ 449.0094 \ 110.9959 \ 111.0002 \ 110.9988 \ 110.9962 \ 110.9868]$

 $\sigma_2^{\prime} = [201.0032 \quad 201.0033 \quad 200.9977 \quad 200.9999$

201.0000 201.0003 200.9976 200.9999 201.0045 201.0037 201.0032 200.9998 201.0012 201.0039 201.0127] 738.0014 $\bar{x}_{3}^{l} = u^{l}(k) = [737.9969]$ 551.0014 738.0000 924.0003 924.0000 551.0215 738.0039 923.9956 737.9792 37.9969 551.0001 178.0008 364.0000 177.9976] $\sigma_3^l = [241.0028]$ 240.9991 241.0000 241.0017 240.9994 241.0076 241.0254 240.9971 241.0000 241.0153 241.0028 241.0000 241.0007 241.0022 241.0044] $\bar{x}_{4}^{l} = RH^{l}(k) = [99.3001]$ 98.9000 98.9001 97.9998 98.9004 98.8999 99.7000 99,7000 99.7000 99.7001 99.7000 99.7000 99.7000 99.7000 98.0005] 0.6000 $\sigma_{4}^{l} = [0.6000]$ 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000 0.6000] $\bar{x}_{5}^{l} = T_{g}^{l}(k-1) = [27.9024]$ 27.9005 27.9002 30 34.3000 30.0008 34,3000 32.1907 34.2999 30.0044 27.9007 25.7966 25.8107 27.8961 27.9009 2.9000 2.9000 2.9000 2.9000 $\sigma_{5}^{l} = [2.9000]$ 2.9000 2.9000 2.9000 2.9000 2.9002 2.9001 2.9000 2.9000 2.9001 2.9001]

The learning and prediction results are showed in Fig 2.

IV.CONCLUSION

It is rather difficult to model completely for greenhouse climate only basing on the physical laws involved in the process. Combing physical modeling with adaptive fuzzy logic system is a way to obtain the nonlinear functional relation between the greenhouse temperature and various climate factors. The simulation shows that this method can track the real system.

V.ACKNOWLEDGMENS

The research is supported by the High-Tech Research and Development Program of China (No.863-511-945-002) and the Zhejiang Province Natural Science Foundation of China (No. 698073).

VI.REFERENCES

- Bernard Bailey(1991). Climate Modeling and control in greenhouses. In:John Matthews (Eds.)Progress inagricultural physics and engineering, C. A. B. International pp. 173-201(chp.7)
- [2] Bot G.(Gerard) P. A. (1993). Physical modelling of greenhouse climate. In: Y. Hashimoto, G.P.A. Bot, W. Day, H.-J. Tantau, N. Nonami (Eds.) The Computerized Greenhouse, Academic Press, Inc., pp. 51-73. (chp.2)
- [3] Hooper, A.W., Davis, P.F., (1985). Control of greenhouse air temperature with an adaptive control algorithm. Acta Hort. 174, 407-412.
- [4] J.Boaventura Cunha, Carlos Couto, A.E.B. Ruano (1997). Real-time parameter estimation ofdynamic temperature and humidity models for greenhouse adaptive climate control. In: A. Munack, H.-J. Tantau (Eds) Mathematical and control applications in agriculture and horticulture, A proceedings volume from the 3rd IFAC workshop, Hannover, Germany,1997, pp.49-54
- [5] Martin-Clourire, R., T. Boulard, M.-J. Cros and B. Jeannequin (1993). Using empirical knowledge for the determination of climate sepoints: an artificial intelligence approach. In: Y. Hashimoto, G.P.A. Bot, W. Day, H.-J. Tantau, N. Nonami (Eds.) The Computerized Greenhouse, Academic Press, Inc., pp. 197-224.(chp.9)
- [6] Munack A.(Axel) (1993). Measurement and parameter identification problems for control of biotechnical processes, In: Y. Hashimoto, G.P.A. Bot, W. Day, H.-J. Tantau, N. Nonami (Eds.) The Computerized

Greenhouse, Academic Press, Inc., pp. 75-93. (chp.3)

- [7] Seginer, I., T. Boulard and B.J.Bailey(1994). Neural network models of the greenhouse climate. J.Agric. Engng. Res. 59, 203-216.
- [8] Tantau, H.-J., (1989). Models for greenhouse climate control. Acta Hort. 245, 397-404.
- [9] Van Straten G., J. W. Bentum, R. F. Tap(1997). Paradigms in greenhouse climate control: On hierarchy and energy savings. In: A. Munack, H.-J. Tantau(Eds) Mathematical and control applications in agriculture and horticulture, A proceedings volume from the 3rd IFAC workshop, Hannover, Germany,1997, pp.307-312
- [10] Boaventura Cunha, J., Ruano, A.E.B., Couto, C.(1996). Identification of greenhouses climate dynamic models. Proceedings of the sixth international congress on computers in agriculture, 161-171.
- [11] Bot. G.P.A., (1983). Greenhouse Climate: from physical processes to a dynamic model. Doctoral Thesis, Agricultrual University of Wageningen. Wageningen. The Netherlands.
- [12] Bot. G.P.A., (1991).: Physical modeling of greenhouse climate. Proceedings of the IFAC/ISHS Workshop, 7-12.
- [13] Jones, p.,B.K. Jacobson and H.W. Jones (1998). Applying expert systems to real-time greenhouse controls. Acta Horticulturae, 230, 201-208.
- [14] Xin-ling Qian, Li-hong Xu, Qi-di Wu, Modeling method of dynamic model of greenhouse microclimate(in Chinna), Automation technology and application, 1998, 238-243
- [15] Wang Lixin, Adaptive fuzzy logic system and control—design and stability analysis(in Chinna), 1995.9
- [16] Wan-Liang Wang, Qi-Di Wu. (1999). Neural Network Modeling and Intelligent Control of the Distributed Parameter Greenhouse Climate, Proceedings of the 14th IFAC World Congress, Beijing, P. R. China, 5-9 July 1999 vol. K, pp 479-484

1691